Andrea S Bruder* (Andrea_Bruder@baylor.edu), Andrea Bruder, Baylor University, One Bear Place \#97328, Waco, TX 76798-7328. Jacobi polynomials $(\alpha=\beta=-1$), their Sobolev orthogonality, and self-adjoint operators.
It is a well known result by Bochner that, for $-\alpha,-\beta,-\alpha-\beta-1 \notin \mathbb{N}$, the Jacobi polynomials $\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ are orthogonal on \mathbb{R} with respect to a bilinear form of the type

$$
(f, g)_{\mu}=\int_{\mathbb{R}} f \bar{g} d \mu
$$

for some measure μ. However, for $\alpha=\beta=-1$, from Favard's theorem, the Jacobi polynomials cannot be orthogonal with respect to a bilinear form of this type for any measure. But are they orthogonal with respect to some "natural" inner product? Indeed, they are orthogonal with respect to a Sobolev inner product. We discuss this Sobolev orthogonality and construct a self-adjoint operator in a certain Hilbert-Sobolev space that has the Jacobi polynomials $\left\{P_{n}^{(-1,-1)}(x)\right\}_{n=0}^{\infty}$ as a complete set of eigenfunctions. To this end, we show that the quest for the right Hilbert-Sobolev space amounts to the study of the left-definite spaces and operators associated with the Jacobi differential expression. (Received September 19, 2007)

