1035-35-1073 **Peter Takac*** (peter.takac@uni-rostock.de), Institute for Mathematics, University of Rostock, Universitaetsplatz 1, D - 18055 Rostock, Germany. Two Applications of Monotone Systems to Quasilinear Elliptic Problems.

We consider the following quasilinear elliptic problem,

(P)
$$-\Delta_p u = \lambda |u|^{p-2} u + f(x)$$
 in Ω ; $u = 0$ on $\partial\Omega$,

and a strictly cooperative system of such equations. Here, Ω is a smooth, open bounded domain in \mathbb{R}^N and $\Delta_p u$ denotes the *p*-Laplace operator, $1 . The real number <math>\lambda$ is a spectral parameter. Given a function $f \in L^{\infty}(\Omega)$, $f \geq 0$, we investigate the existence, uniqueness, and positivity of a weak solution $u \in W_0^{1,p}(\Omega)$ to problem (P). In the first part we concentrate on the existence and simplicity of the first (smallest) eigenvalue λ_1 for both, the single equation (P) and a strictly cooperative system of such equations. We apply a method using the monotonicity and the part metric. In the second part we discuss the strong comparison principle for problem (P). For 1 we use monotone dynamics of a $cooperative system of two ODE's to show this principle for the radially symmetric problem in a ball, <math>f \geq 0$, and $\lambda < \lambda_1$. For $2 we give a simple counterexample for such a problem if <math>\lambda$ is large negative. (Received September 18, 2007)