1035-37-1442 Candace M. Kent* (cmkent@vcu.edu), 3510 Hanover Avenue, Richmond, VA 23221-2208, and Hassan Sedaghat, David M. Chan, Eun R. Chang, Mehdi Dehghan and Reza
Mazrooei-Sebdani. Asymptotic Stability for Difference Equations with Decreasing Arguments.
We consider general, higher-order difference equations of the form

$$
x_{n}=f\left(x_{n-1}, \ldots, x_{n-m}\right), n=1,2, \ldots,
$$

in which the function f is nondecreasing in each argument. We obtain sufficient conditions for the asymptotic stability of a unique fixed point relative to an invariant interval. We also discuss the following applications of our main results:

1. The rational equation $x_{n}=\left(\sum_{i=1}^{m} \frac{a_{i}}{x_{n-i}}\right)^{p}$ for $n=1,2, \ldots$.
2. The rational equation $x_{n}=\frac{1}{\left[\sum_{i=1}^{m} a_{i} x_{n-i}^{p_{i}}\right]^{p}}$ for $n=1,2, \ldots$.
3. A simple model for irregular heartbeat.
(Received September 19, 2007)
