1035-39-1242 Sukanya Basu* (sukanya@math.uri.edu), Department of Mathematics, 9 Greenhouse Road, Suite 3, Kingston, RI 02881, and Orlando Merino (merino@math. uri.edu), Department of Mathematics, 9 Greenhouse Road, Suite 3, Kingston, RI 02881. On the Global Behavior of Nonnegative Solutions to $x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}$ with positive parameters.
We investigate behavior of solutions of the second order rational difference equation

$$
\begin{equation*}
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where the parameters $\alpha, \beta, \gamma, A, B$ and C are positive and the initial conditions x_{-1}, x_{0} are nonnegative. We prove that in the case when the positive equilibrium \bar{x} is hyperbolic, it is locally asymptotically stable if and only if (1) does not possess prime period-two solutions. In addition, it is shown that when \bar{x} is locally asymptotically stable, it is a global attractor in certain regions of parameter values. Finally, we prove that if \bar{x} is a saddle then the square of the map associated with the equation is competitive, and that there exists a unique prime period-two solution of (1). In this case, solutions are shown to enter a certain region \mathcal{R} where the global stable manifold of (\bar{x}, \bar{x}) is a smooth curve \mathcal{C} which is the graph of a strictly increasing function of one variable. (Received September 19, 2007)

