1035-41-843 Mohammed A. Qazi* (qazima@aol.com), Department of Mathematics, Tuskegee University, Tuskegee, AL 36088. An L^{p} Inequality for Polynomials.
Let \mathcal{P}_{n} be the class of all polynomials of degree at most n, and let $\mathcal{M}_{p}(g ; \rho)$ denote the L^{p} mean of g on the circle of radius ρ centered at the origin. We specify a number $\rho^{*} \in(0,1)$, depending on n and k, such that for any $f \in \mathcal{P}_{n}$, the ratio $\mathcal{M}_{p}\left(f^{(k)} ; \rho\right) / \mathcal{M}_{p}(f ; 1)$ is maximized by $f(z):=z^{n}$ for all $\rho \in\left[\rho^{*}, \infty\right)$ and $p \geq 1$. Here, $f^{(k)}$ denotes the k-th derivative of f. The interest of the result lies in the fact that ρ^{*} is strictly less than 1. (Received September 16, 2007)

