1035-44-639

Arthur Getis* (arthur.getis@sdsu.edu), Department of Geography, San Diego State University, San Diego, CA 92182. Identifying Super-Annual Oscillations of an Infectious Disease in a Space-Time Pattern with the Use of the Hilbert-Huang Transform.

The Hilbert-Huang Empirical Mode Decomposition (EMD) is used to subdivide Thailand province time-series data on human dengue hemorrhagic fever (DHF) infections into Intrinsic Mode Functions in order to test the hypothesis that the incidence of the mosquito-borne tropical disease can be accurately described by a spatial-temporal traveling wave. In 2001 alone, the World Health Organization reported 500,000 cases of DHF, the severe and sometimes fatal form of the disease. We test Cummings et al. (2004)# theory of repeating traveling waves in a 3-year periodic component of variance which is thought to reflect host-pathogen population dynamics. We recognize how a single epidemic might bias long term EMD results. Further examination of the dynamics using EMD analysis reveals a super-annual series of oscillations in a broader periodic range revealing a systematic space time pattern of epidemic behavior over two decades that are very different from Cummings et al. 3-year traveling wave.

Cummings DAT, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS (2004) Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427: 344-347. (Received September 12, 2007)