J. Marshall Ash* (mash@math.depaul.edu), 2320 N. Kenmore, Chicago, IL 60614, and Michael A. Ash and Peter F. Ash. A quadrilateral inside another one.

Connect each vertex of a convex quadrilateral Q to the midpoint of the next (proceeding counterclockwise) side. The four connecting lines create an interior quadrilateral I. The ratio $\operatorname{area}(I) / \operatorname{area}(Q)$ can take any value in the interval $(1 / 6,1 / 5]$. More generally, we determine what happens to $\operatorname{area}(I) / \operatorname{area}(Q)$ when the four midpoints are replaced by points which divide the sides in the ratio of ρ to $(1-\rho)$ proceeding clockwise. Here ρ is any fixed number satisfying $0<\rho<1$. We also give a geometric characterization of the set of all quadrilaterals with maximal ratio. (Received September 19, 2007)

