Robert D. Poodiack* (rpoodiac@norwich.edu), Norwich University, Department of Mathematics, 158 Harmon Drive, Northfield, VT 05663, and Kevin J. LeClair (leclairk@norwich.edu), Norwich University, 158 Harmon Drive, Northfield, VT 05663. A fundamental theorem of algebra for the perplex numbers.
The perplex numbers are an extension of the real numbers in which one attaches a number h whose square is 1 , but $h \neq \pm 1$. (That's why the numbers are perplex, rather than complex.) We look at the basic properties of this ring, as well as the interesting phenomenon that a polynomial of degree n has n^{2} roots in the perplex numbers. We also will reveal a scheme to assign multiplicities in a way that makes a Fundamental Theorem of Algebra possible. (Received September 17, 2007)

