1046-05-1278 James N Brantner* (jbrantne@erskine.edu), PO Box 1001, CPO 229, Due West, SC 29639. On Seymour's Second Neighborhood Conjecture.
Let D be a simple digraph without loops or digons (i.e. if $(u, v) \in E(D)$, then $(v, u) \notin E(D))$. For any $v \in V(D)$ let $N_{1}(v)$ be the set of all vertices at out-distance 1 from v and let $N_{2}(v)$ be the set of all vertices at out-distance 2. We provide sufficient conditions under which there must exist some $v \in V(D)$ such that $\left|N_{1}(v)\right| \leq\left|N_{2}(v)\right|$, as well as examine properties of a minimal graph which does not have such a vertex. We show that if one such graph exists, then there exist infinitely many strongly-connected graphs having no such vertex. (Received September 15, 2008)

