1046-05-1782 Marshall M Cohen* (marshall.cohen@morgan.edu), Department of Mathematics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251. Elements of Finite Order in the Riordan Group.
Suppose that D is an integral domain of characteristic zero and D^{*} is the group of units in $D-\{0\}$. The Riordan group over D, denoted $\mathcal{R}(D)$. is the set of ordered pairs (g, f) of formal power series over D where $g(z)=\sum_{n=0}^{\infty} g_{n} z^{n} f(z)=$ $\sum_{n=1}^{\infty} f_{n} z^{n}, \quad g_{0}, f_{1} \in D^{*}$, The operation is a combination of series multiplication and formal composition of series (substitution) given by

$$
(g, f)(G, F)=(g \cdot(G \circ F), F \circ f)
$$

Theorem: If (g, f) has finite order in $\mathcal{R}(D)$ then $\operatorname{order}(g, f)$ is the least common multiple of the orders of g_{0} and f_{1} in D^{*}.
Corollary: The order of an element of finite order in the Riordan group over \mathbb{R} (or \mathbb{Q} or \mathbb{Z}) is either one or two. (Received September 16, 2008)

