Blair D Sullivan* (sullivanb@ornl.gov), Oak Ridge National Laboratory, P.O. Box 2008, MS 6015, Oak Ridge, TN 37831. Counting Paths in Digraphs.
Say a digraph is k-free if it has no directed cycles of length at most k, for $k \in \mathbb{Z}^{+}$. Thomassé conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most $(n-1) n(n+1) / 15$. We survey Bondy's proof that there are at most $2 n^{3} / 25$ such paths, and present the new result that, for the class of circular interval digraphs, a tight upper bound of $n^{3} / 16$ holds. We also show an application of Bondy's result to the problem of bounding the number of (non-induced) 4 -vertex paths in 3 -free digraphs (we prove there are at most $4 n^{4} / 75$). (Received August 25,2008)

