Dept. of Math, West Virginia University, Morgantown, WV 26506. Bounded number of components of 2-factors in line graphs.
A 2-factor is a 2-regular spanning subgraph of a graph G. A lot of results on the components of a 2-factor in G have appeared by studying the conditions on the minimum degree of the graph G. In this paper we avoid studying the minimum degree and get the following: if $\max \{d(x), d(y)\} \geq \frac{n-\mu}{p}-1$ holds for any $x y \notin E(G)$ and $|U| \neq 2$, where $U=\left\{v: d(v)<\frac{n-\mu}{p}-1\right\}, p \geq 2$ and μ are two positive integers, then for n sufficiently large relative to p and $\mu, L(G)$ has a 2 -factor with at most $p+1$ components. Moreover, $L(G)$ has a 2 -factor with at most p components if $|U| \leq 1$. This result is best possible. Especially, it extends a result saying that if $\delta(G) \geq \frac{n}{p}-1$, i.e., $U=\emptyset$, then $L(G)$ has a 2 -factor with at most p components. We also show the graphs above are $(p+2)$-supereulerian, i.e., have a spanning even subgraph with at most $p+2$ components. (Received September 04, 2008)

