1046-05-514 Daniel W Cranston* (dcransto@gmail.com), DIMACS, CoRE floor 4, Rutgers, 96
Frelinghuysen Road, Piscataway, NJ 08854, and David Lapayowker. Entire ( $\Delta+4$ )-Choosability of Planar Graphs with $\Delta \geq 8$.
A plane graph is called entirely $k$-choosable if, for any list assignment $L$ such that $|L(x)|=k$ for each $x \in V(G) \cup E(G) \cup$ $F(G)$, we can assign each element $x$ a color from its list such that any two elements that are adjacent or incident receive distinct colors. Wang and Lih conjectured that every plane graph is entirely $(\Delta+4)$-choosable, where $\Delta$ is the maximum degree. They showed that every plane graph with $\Delta \geq 12$ is entirely $(\Delta+4)$-choosable and that every plane graph with $\Delta \geq 9$ is entirely $(\Delta+5)$-choosable. We improve their results by showing that every plane graph with $\Delta \geq 8$ is entirely ( $\Delta+4$ )-choosable. (Received September 05, 2008)

