1046-05-574 Adam Berliner and Richard A Brualdi* (brualdi@math.wisc.ed), Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53726, and Louis Deaett, Kathleen P Kiernan, Seth Myer and Michael Schroeder. Signed Domination Number of a Matrix. Preliminary report.

Let $A = [a_{ij}]$ be an m by n (0, 1)-matrix (bi-adjacency matrix of a bipartite graph G with a bipartition into sets of sizes m and n). A signing of A is a (0, 1, -1)-matrix $A = [a'_{ij}]$ with the same nonzero pattern as A. The value of the signing is $\sum_{ij} a'_{ij}$. The signing A' is called a *dominating signing* provided whenever $a'_{pq} \neq 0$ (that is, $a_{pq} = 1$), we have $a'_{pq} + \sum_{j \neq q} a'_{pj} + \sum_{i \neq p} a'_{iq} \geq 1$. The signed domination number of A is the minimum value of a dominating signing of A. We investigate and determine the signed domination number of several classes of matrices, including the m by n matrices J_{mn} of all 1s and $J_{nn} - I_n$. (Received September 08, 2008)