1046-11-1518 Sherry Gong*, Cabot Mail Center Box \#291, Cambridge, MA 02138. On a Conjecture Regarding the Coefficients of Cyclotomic Polynomials.
Let $a_{n}(k)$ be the coefficient of x^{k} in the nth cyclotomic polynomial

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\ \operatorname{gcd}(j, n)=1}}^{n}\left(x-e^{\frac{2 \pi j i}{n}}\right)
$$

Let $M\left(a_{n}(k)\right)=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} a_{n}(k)$ be the average of $a_{n}(k)$, as introduced by Möller, and let

$$
f_{k}=\frac{\pi^{2}}{6} M\left(a_{n}(k)\right) k \prod_{\substack{q \leq k \\ q \text { prime }}}(q+1) .
$$

It was conjectured by Y. Gallot, P. Moree and H. Hommersom that the f_{k} are integers for all k. In this paper, we prove this conjecture. Moreover, we show that for any fixed natural number n, f_{k} contains n as a factor for sufficiently large k. (Received September 15, 2008)

