1046-11-2071 Kiryl I Tsishchanka* (ktsishch@depaul.edu), Department of Mathematical Sciences, DePaul University, 2320 North Kenmore Ave., Chicago, IL 60614. On integer polynomials that are small at a given cubic irrational.
Lagrange proved that the regular continued fraction of a real number ξ is periodic if and only if ξ is quadratic. Moreover, it is known that if $\xi=[0, \bar{a}]$, then

$$
\lim _{i \rightarrow \infty}\left|q_{i} \xi-p_{i}\right| q_{i}=1 / \sqrt{D}
$$

where D is discriminant of ξ and p_{i} / q_{i} is its i th convergent. In the first part of this talk we will discuss a generalization of this statement to the case $\xi=\left[0, \overline{a_{1}, \ldots, a_{k}}\right], k>1$.

Now let ξ be a cubic irrational. In the second part of the talk we will present a simple and fast algorithm to construct integer polynomials P_{i} of degree ≤ 2 such that $\left|P_{i}(\xi)\right|$ are small at ξ. There is another property of the sequence P_{i} which is of particular interest. Put $K_{i}^{(2)}=\left|P_{i}(\xi)\right|\left\|P_{i}\right\|_{2}^{2}$, where $\|\cdot\|_{2}$ is the ℓ^{2}-polynomial norm. We will show that there is a connection between $K_{i}^{(2)}$ and the beta distribution. (Received September 17, 2008)

