1046-11-725 Thomas J. Wright* (wright@math.jhu.edu), Department of Mathematcs, Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218. Convergence of Singular Series for a Pair of Quadratic Forms.
Examining the system of Diophantine equations

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{1}^{2}+\ldots x_{n}^{2}=\nu_{1} \\
f_{2}(x)=\lambda_{1} x_{1}^{2}+\ldots \lambda_{n} x_{n}^{2}=\nu_{2}
\end{array}\right.
$$

with $\lambda_{i} \neq \lambda_{j}$ and $\nu_{i}, \lambda_{i} \in \mathbb{Z}$, we develop what is known as the singular series $S(\nu)$, a quantity which is understood to approximate the number of solutions for this pair of equations as the ν_{i} 's become larger. We show that this singular series $S(\nu)$ converges if $n \geq 6$. (Received September 10, 2008)

