Helen G. Grundman* (grundman@brynmawr. edu), Department of Mathematics, Bryn Mawr College, 101 N. Merion Ave., Bryn Mawr, PA 19010. Happy Numbers and Semihappy Numbers. Let $\mathbf{e}=\left(e_{0}, e_{1}, \ldots\right)$ be a sequence with $e_{0}=2$ and $e_{i} \in\{1,2\}$ for $i>0$. Let $S_{\mathbf{e}}: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$be defined by

$$
S_{\mathrm{e}}\left(\sum_{i=0}^{n} a_{i} 10^{i}\right)=\sum_{i=0}^{n} a_{i}^{e_{i}}
$$

An e-semihappy number is a positive integer a such that for some $k \in \mathbf{Z}^{+}$,

$$
S_{\mathbf{e}}^{k}(a)=1 .
$$

Recall that a happy number is the special case of an \mathbf{e}-semihappy number with $\mathbf{e}=(2,2,2, \ldots)$. We say that a positive integer is a semihappy number if it is an e-semihappy number for some \mathbf{e}, as above.

After introducing these concepts, we will summarize a variety of results, and indicate methods of proof, concerning fixed points and cycles of $S_{\mathbf{e}}$, heights and global heights of e-semihappy numbers, and lengths of sequences of consecutive e-semihappy numbers. (Received September 13, 2008)

