1046-12-1832 Laurel Miller-Sims* (millerlg@math.mcmaster.ca), Department of Mathematics \& Statistics, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada. Hilbert's Seventeenth Problem in Valued Fields.
A generalized version of Hilbert's seventeenth problem asks for a characterization of those rational functions over the reals that, respectively, take non-negative values, positive values or vanish on a given semi-algebraic set. Valued fields are natural structures in which to formulate analogues of this question as we may replace the notions of being nonnegative and positive with the notions of having non-negative and positive valuation. In particular, we study Hilbert's seventeenth problem in certain model-complete theories of valued fields. Given a valued field, possibly with additional structure such as an ordering or derivation, (K, v, \ldots) and a (first-order) definable subset S of K^{n} we find a subring A of $K(X)=K\left(X_{1}, \ldots, X_{n}\right)$, depending on S and the structure on K, and an ideal B of A such that $f \in K(X)$ is integral-definite on S if and only if f is in the integral closure of A and f is infinitesimal-definite on S if and only if f is in the integral closure of B. While the results are algebraic the proofs are model-theoretic in nature. (Received September 16, 2008)

