1046-13-1207 Kuei-Nuan Lin* (link@purdue.edu), 150 N. University St., West Lafayette, IN 47907. Diagonal ideals of determinantal rings.
Let k be a field, $m \leq n$ positive integers, $X=\left(x_{i j}\right)$ an m by n matrix of variables over $k, I_{m}(X)$ the ideal of $k\left[\left\{x_{i j}\right\}\right]$ generated by the maximal minors of X, and $R=k\left[\left\{x_{i j}\right\}\right] / I_{m}(X)$. We consider the diagonal ideal \mathbb{D} of R, defined via the exact sequence

$$
0 \longrightarrow \mathbb{D} \longrightarrow S=R \otimes_{k} R \xrightarrow{\text { mult }} R \longrightarrow 0
$$

Recall that $\mathcal{R}(\mathbb{D}) \otimes_{S} k$ is the homogeneous coordinate ring of the secant variety of the determinantal variety $V\left(I_{m}(X)\right) \subset$ $\mathbb{P}_{k}^{m n-1}$, where $\mathcal{R}(\mathbb{D})$ denotes the Rees algebra of \mathbb{D}. It is classically know that the secant variety is all of projective space in this case. We extend this fact by showing that \mathbb{D} is an ideal of linear type, which means that the natural map from the symmetric algebra $\operatorname{Sym}(\mathbb{D})$ onto the Rees algebra $\mathcal{R}(\mathbb{D})$ is an isomorphism. (Received September 15, 2008)

