1046-14-1062 Emma Previato* (ep@bu.edu), Department of Mathematics and Statistics, Boston University, Boston, MA 02215-2411, and Shigeki Matsutani. Abelian formulas for cyclic curves.

Generalized elliptic curves called $C_{a,b}$ curves, namely $f(x, y) = y^a + x^b + f_{a-1,b-1}(x, y)$ (a and b coprime positive integers and in $f_{a-1,b-1}(x, y)$, a monomial $x^r y^s$ satisfies ar + bs < ab), have emerged in areas as different as number theory and PDEs. Generalizing the genus-1 equation (Kiepert) for the nonzero points of period n, the determinant $\sigma(nz)/\sigma(z)^{n^2}$ of a matrix with entries derivatives of the \wp function, we give a determinantal equation for a polynomial in (x, y) that vanishes at a point P of a $C_{a,b}$ curve iff the Abel image of nP belongs to the theta divisor Θ . We use addition theorems generalizing Klein-Baker's work on the higher-genus Weierstrass σ function (J.C. Eilbeck, V.Z. Enolski, S. Matsutani, Y. Ônishi and E. Previato, Int. Math. Res. Not. 2008). For such curves with a specific group action we give more refined statements on the stratification of Θ . For a genus-3 curve that admits an automorphism of order 3 with quotient \mathbb{P}^1 we find formulas that generalize Jacobi's $\operatorname{sn}^2(z) + \operatorname{cn}^2(z) = 1$ (for a hyperelliptic curve, cf. S. Matsutani, Surv. Math. Appl. 2008). (Received September 14, 2008)