1046-14-1062 Emma Previato* (ep@bu.edu), Department of Mathematics and Statistics, Boston University, Boston, MA 02215-2411, and Shigeki Matsutani. Abelian formulas for cyclic curves.
Generalized elliptic curves called $C_{a, b}$ curves, namely $f(x, y)=y^{a}+x^{b}+f_{a-1, b-1}(x, y)$ (a and b coprime positive integers and in $f_{a-1, b-1}(x, y)$, a monomial $x^{r} y^{s}$ satisfies $\left.a r+b s<a b\right)$, have emerged in areas as different as number theory and PDEs. Generalizing the genus-1 equation (Kiepert) for the nonzero points of period n, the determinant $\sigma(n z) / \sigma(z)^{n^{2}}$ of a matrix with entries derivatives of the \wp function, we give a determinantal equation for a polynomial in (x, y) that vanishes at a point P of a $C_{a, b}$ curve iff the Abel image of $n P$ belongs to the theta divisor Θ. We use addition theorems generalizing Klein-Baker's work on the higher-genus Weierstrass σ function (J.C. Eilbeck, V.Z. Enolski, S. Matsutani, Y. Ônishi and E. Previato, Int. Math. Res. Not. 2008). For such curves with a specific group action we give more refined statements on the stratification of Θ. For a genus- 3 curve that admits an automorphism of order 3 with quotient \mathbb{P}^{1} we find formulas that generalize Jacobi's $\mathrm{sn}^{2}(z)+\mathrm{cn}^{2}(z)=1$ (for a hyperelliptic curve, cf. S. Matusutani, Surv. Math. Appl. 2008). (Received September 14, 2008)

