1046-14-1239 Mark E Huibregtse* (mhuibreg@skidmore.edu), Dept. of Mathematics and Computer Science, Skidmore College, Saratoga Springs, NY 12866. Some syzygies of the generators of the ideal of a border basis scheme. Preliminary report.

Let K be an alg. closed field, char(K) = 0. An \mathcal{O} -border basis scheme $\mathbb{B}_{\mathcal{O}}$ [Kreutzer and Robbiano, Deformations of Border Bases, Collect. Math. 59, no. 3 (2008)] parameterizes the ideals $I \subseteq K[x_1, \ldots, x_n]$ such that $K[\mathbf{x}]/I$ has K-basis the order ideal $\mathcal{O} = \{t_1, \ldots, t_\mu\}$. Any such I has (unique) generators of the form $g_j = b_j - \sum_{i=1}^{\mu} c_{ij}t_i$, $1 \leq j \leq \nu$, where $\{b_1, \ldots, b_\nu\} = (x_1 \mathcal{O} \cup \cdots \cup x_n \mathcal{O}) \setminus \mathcal{O}$ is the border of \mathcal{O} . Viewing the c_{ij} as variables, one has that $\mathbb{B}_{\mathcal{O}} \subseteq \text{Spec}(K[(c_{ij})])$ is cut out by the entries ρ_{pq}^{kl} of the basic commutators $\mathcal{A}_k \mathcal{A}_l - \mathcal{A}_l \mathcal{A}_k$ of the matrices representing multiplication by $x_k \neq x_l$ on $K[(c_{11}, \ldots, c_{\mu\nu}][x_1, \ldots, x_n]/(g_j)$. We construct syzygies of the ρ_{pq}^{kl} by taking traces of products of the \mathcal{A}_k and the basic commutators that reduce to commutators. The simplest examples are: $\text{Tr}(\mathcal{A}_k \mathcal{A}_l - \mathcal{A}_l \mathcal{A}_k) = \sum_{i=1}^n \rho_{ii}^{kl} = 0$. (Received September 15, 2008)