1046-14-889 Harvey Cohn* (hcohn@ccrwest.org), IDA Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121. Abelian Manifolds of arbitrary genus with Complex Multiplication. Preliminary report.
Given a companion ($g \times g$) matrix S for an irreducible monic equation with g real roots (listed in decreasing order) and integral matrices A, B commuting with S. Then we solve the matrix equation $W^{2}-A W+B=0$ (after diagonalizing by the Vandermondian). The diagonalized values of W are assumed totally complex with alternating signs for the imaginary surds. We also need a unimodular matrix U for which both U and $U S$ are symmetric. Then $Z=W U^{-1}$ is a Riemann Matrix $\left(Z=Z^{t}, \Im Z \gg 0\right)$ and the Abelian period matrix $J=[E, Z]$ has the endomorphisms S, W, $\left(S J=\left[S, Z S^{t}\right], W J=\left[Z U, Z A^{t}-B U^{-1}\right]\right)$. The case $g=1$ is elliptic, and Humbert (1899) showed for $g=2$ this is the most general case (not likely for $g>2$). If the signs of the surds are chosen by group theory (not order) Z could be imaginary quadratic (but singular). (Received September 12, 2008)

