1046-16-1091Martin W Montgomery* (mmontgomery@piedmont.edu), 165 Central Ave, Demorest, GA
30535. Square-Free Rings and their Automorphism Group.

Finite-dimensional square-free K-algebras have been completely characterized by Anderson and D'Ambrosia as certain semigroup algebras $A \cong K_{\xi}S$ over a square-free semigroup S twisted by some $\xi \in Z^2(S, K^*)$, a two-dimensional cocycle of S with coefficients in the group of units K^* of a field K. D'Ambrosia extended the definition of square-free to artinian rings with unity and showed every square-free ring has an associated division ring D and square-free semigroup S. We show a square-free ring R can be characterized as a semigroup ring over a square-free semigroup S twisted by some $(\alpha, \xi) \in Z^2(S, D^*)$, a two-dimensional cocycle of S with coefficients in the nonabelian group of units D^* of a division ring D. Also, to each square-free ring $R \cong D^{\alpha}_{\xi}S$ there exists a short exact sequence

$$1 \longrightarrow H^1_{(\alpha,\xi)}(S, D^*) \longrightarrow \text{Out } R \longrightarrow \text{Stab}_{(\alpha,\xi)}(\text{Aut } S) \longrightarrow 1.$$

connecting the outer automorphisms of R to cohomology groups related to S and D. (Received September 14, 2008)