1046-20-1224 Christopher M Drupieski* (cmd6a@virginia.edu), University of Virginia, Department of Mathematics, Kerchof Hall, Charlottesville, VA 22904. Cohomology of finite-dimensional quantized enveloping algebras: the mixed case.

Let k be an algebraically closed field. Let Φ be an indecomposable root system, and let U_{ζ} denote the corresponding quantized enveloping algebra (Lusztig integral form) with parameter q specialized to a primitive ℓ -th root of unity $\zeta \in k$. Let G denote the simple, simply-connected algebraic group over k with root system Φ . The Frobenius–Lusztig kernel u_{ζ} is a finite-dimensional Hopf subalgebra of U_{ζ} . The structure of the cohomology ring $H^{\bullet}(u_{\zeta}, k)$ has been well-studied in the case $k = \mathbb{C}$, but results on the structure of $H^{\bullet}(u_{\zeta}, k)$ when k has positive characteristic (the so-called mixed case) are absent from the literature. In this talk we will discuss the structure of $H^{\bullet}(u_{\zeta}, k)$ under the assumption that k has positive characteristic. We will also discuss the cohomology rings of certain other finite-dimensional subalgebras of U_{ζ} corresponding to higher Frobenius kernels of G. (Received September 15, 2008)