1046-22-1130 Lisa Carbone and Leigh Cobbs* (cobbs@math.rutgers.edu). Infinite Towers of Cocompact Lattices in Kac-Moody Groups. Preliminary report.

Let G be a locally compact Kac-Moody group of affine or hyperbolic type over a finite field \mathbb{F}_2 . We suppose that G has type ∞ , that is, the Weyl group W of G is a free product of $\mathbb{Z}/2\mathbb{Z}$'s. This includes all rank 2 and two possible rank 3 Kac-Moody groups. We show that if rank(G) = 2 then G contains an infinite tower of non-conjugate cocompact lattices $\dots \Gamma_3 \leq \Gamma_2 \leq \Gamma_1 \leq \Gamma$, and we characterize the quotient graphs of groups $\Gamma_i \setminus X$. We also give sufficient conditions for extending coverings of edge-indexed graphs to covering morphisms of graphs of groups and we show how this gives rise to other infinite families of cocompact lattices in G. When rank(G) = 3 we exhibit a subgroup \mathcal{Q} which contains a cocompact lattice Λ acting discretely and cocompactly on a simplicial tree \mathcal{X} . We exhibit an infinite tower of cocompact lattices $\dots \Lambda_3 \leq \Lambda_2 \leq \Lambda_1 \leq \Lambda$ in \mathcal{Q} whose images in G are also discrete. This induces a tower of non-discrete subgroups $\dots \Lambda'_3 \leq \Lambda'_2 \leq \Lambda'_1 \leq \Lambda$ in G for which we can characterize the quotient complexes of groups. (Received September 14, 2008)