1046-32-1713
Jennifer Halfpap* (halfpap@mso.umt.edu), UM Dept. of Mathematical Sciences, 32 Campus Drive, Missoula, MT 59812. Behavior of $\int \exp (r z-b(r)) d r$ for Smooth b: Connections with the Szegö Projection Operator.
Consider the hypersurface

$$
M=\left\{\left(z_{1}, z_{2}\right): \operatorname{Im}\left(z_{2}\right)=b\left(\operatorname{Re}\left(z_{1}\right)\right)\right\}
$$

where b is smooth and satisfies $\lim _{|r| \rightarrow \infty} b(r) /|r|=\infty$. For such M, the Szegö projection operator has an associated kernel

$$
S\left[\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right]=\iint_{\tau>0} \frac{e^{\eta\left[z_{1}+\overline{w_{1}}\right]+i \tau\left[z_{2}-\overline{w_{2}}\right]}}{N(\eta, \tau)} d \eta d \tau
$$

where $N(\eta, \tau)=\int \exp (2[\eta r-\tau b(r)]) d r$. Thus the nature and location of the singularities of S are intimately tied to the behavior of N. In this talk we explore size estimates for N as well as the location of the complex zeros of the entire function obtained by replacing η with a complex variable. We relate this to results obtained with Nagel and Wainger on the Szegö projection operator when M has a point of infinite type. (Received September 16, 2008)

