1046-34-2039

Cesar Martinez Garza^{*} (cxm58@psu.edu), Penn State Berks, Tulpehocken Road, Reading, PA 19610. Newton-like Methods for Convex-Concave Functions via the Method of Generalized Quasilinearization. Preliminary report.

In this paper the Method of Generalized Quasilinearization is used to obtain Newton-like comparative schemes to solve the equation F(x) = 0, where $F(x) \in C[\Omega, \mathbb{R}]$, $\Omega = [\alpha_0, \beta_0]$. Here, F(x) admits the decomposition F(x) = f(x) + g(x), where f(x) and g(x) are convex and concave functions in Ω , respectively. We explore the case where f(x) and g(x)are not naturally convex and concave, but are forced by adding the functions $\Phi(x)$ and $\Psi(x)$ where $\Phi_{xx}(x) > 0$ and $\Psi_{xx}(x) < 0$, such that $f_{xx}(x) + \Phi_{xx}(x) \ge 0$ and $g_{xx}(x) + \Psi_{xx}(x) \le 0$ in Ω . We show the existence of monotone sequences that converge quadratically to the isolated root r of F(x) = 0 in Ω . (Received September 16, 2008)