1046-35-1129

Diane Denny* (diane.denny@tamucc.edu), Department of Mathematics and Statistics, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412. A uniqueness result for equations modeling the flow of a viscous, barotropic fluid under periodic boundary conditions. Preliminary report.

We study the initial-value problem for a system of nonlinear equations that models the flow of a viscous, barotropic fluid under periodic boundary conditions. The system includes a parabolic equation for the velocity, an algebraic equation (the equation of state) for the pressure as a function of the density, and the equation $\nabla \cdot \mathbf{v} = 0$. We prove the existence of a unique classical solution $\rho(\mathbf{x},t)$, $\mathbf{v}(\mathbf{x},t)$ for the time interval $0 \le t \le T$, provided $||D\mathbf{v}_0||_s$ is sufficiently small, where \mathbf{v}_0 is the initial velocity data. The density ρ satisfies $\rho(\mathbf{x}_0,t)=\rho_0(\mathbf{x}_0,t)$ at a chosen point \mathbf{x}_0 in the domain, where ρ_0 is the initial iterate for an iteration scheme. (Received September 14, 2008)