1046-37-1285 **Ionut Chifan*** (ichifan@math.ucla.edu), 1243 Federal Ave, Apt #108, Los Angeles, CA 90025, and Adrian Ioana (aioana@caltech.edu), Los Angeles, CA. Ergodic subequivalence relations induced by a Bernoulli action.

In this talk we will discuss the *deformation/ spectral gap* rigidity principle in von Neumann algebras which was originally introduced by S. Popa, and we derive some applications to ergodic theory. For example, we prove the following result: Let Γ be a countable group and denote by \mathcal{S} the equivalence relation induced by a Bernoulli action $\Gamma \curvearrowright [0,1]^{\Gamma}$ where $[0,1]^{\Gamma}$ is endowed with the product Lebesque measure. Then for any subequivalence relation \mathcal{R} of \mathcal{S} there exists a partition $\{\mathcal{X}_i\}_{i\geq 0}$ of $[0,1]^{\Gamma}$ with \mathcal{R} -invariant measurable sets such that $\mathcal{R}|_{\mathcal{X}_0}$ is hyperfinite and $\mathcal{R}|_{\mathcal{X}_i}$ is strongly ergodic for every $i \geq 1$. (Received September 15, 2008)