1046-47-731 Hakan Hedenmalm (hakanh@math.kth.se), Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden, and Alfonso Montes-Rodriguez* (amontes@us.es), Departamento de Analisis Matematico, Universidad de Sevilla, aptdo 1160, 41013 Sevilla, Spain. One to one compressions of composition operators and the Klein-Gordon equation. Preliminary report.

In this talk, we will see how one-to-one compressions of composition operators on $L^{1}[-1, 1]$ applies to show that the system

$$e^{\pi i \alpha n t}$$
, $e^{i \pi \beta n t}$ $n = 0, 1, 2, \dots$

where α and β are positive numbers, is weakly dense on $L^{\infty}(\mathbb{R})$ if and only if $\alpha\beta \leq 1$. This problem can be stated in terms of the solution of a version of the 1D Klein-Gordon equation. In fact, if a bounded Borel measure μ supported in a curve $\Gamma \subset \mathbb{C}$, which is absolutely continuous with respect to the arc length, and whose Fourier transform $\hat{\mu}$ vanishes on a set $\Lambda \subset \mathbb{C}$, must be athomatically the zero measure, (Γ, Λ) is called a Heisemberg uniqueness pair. When Γ is the hyperbola $x_1 x_2 = 1$, and Λ is the lattice-cross

$$\Lambda = (\alpha \mathbb{Z} \times \{0\}) \cup (\{0\} \times \beta \mathbb{Z}),$$

then (Γ, Λ) is Heisemberg uniqueness pair if and only if $\alpha\beta < 1$; in this situation $\hat{\mu}$ solves the version of the Klein-Gordon equation. Some elements of ergodic theory, like the Birkhoff's ergodic theorem will also be needed. (Received September 10, 2008)