1046-52-1527 Karoly Bezdek* (bezdek@math.ucalgary.ca), Dept. of Math. and Stats., Univ. of Calgary, Calgary, Alberta T2N 1N4, Canada. On partial coverings of convex bodies by planks.
K. Bezdek raised the following problem at the "Intuitive Geometry, in Memoriam László Fejes Tóth" meeting (June 30July 4, 08) in Budapest, Hungary: Let B be an o-symmetric convex body of minimal width 1 in d-dimensional Euclidean space \mathbf{E}^{d}. Moreover, let $w_{1}, w_{2}, \ldots, w_{n}$ be positive real numbers satisfying the inequality $w_{1}+w_{2}+\cdots+w_{n}<1$. Then prove or disprove that the planks $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{n}$ of width $w_{1}, w_{2}, \ldots, w_{n}$ in \mathbf{E}^{d} cover the largest possible volume of \mathbf{B} if $\mathbf{P}_{1} \cup \mathbf{P}_{2} \cup \ldots, \cup \mathbf{P}_{n}$ is a plank of width $w_{1}+w_{2}+\cdots+w_{n}$ with o being its center of symmetry. In the talk we present some partial results. (Received September 15, 2008)

