1046-52-1767

Marton Naszodi* (mnaszodi@math.ualberta.ca), 632 Central Academic Building, Department of Mathematics & Statistics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. On Covering a Convex Set with Its Smaller Copies.

We consider two topics closely related to the Gohberg – Markus – Boltyanski – Hadwiger Problem, which is to prove that every convex body in \mathbb{R}^n is illuminated by 2^n directions. First, we present a new equivalent formulation of the problem, and introduce a fractional version of the illumination number. We show that for symmetric convex bodies, this number is at most 2^n . As a corollary, we obtain that for any symmetric convex polytope with k vertices, there is a direction that illuminates at least $\frac{k}{2^n}$ vertices.

Next, we answer the following question that was posed as Problem 6 in Section 3.2 of [?]: Let H_n denote the smallest integer k such that for every convex body K in \mathbb{R}^n there is a $0 < \lambda < 1$ such that K is covered by k translates of λK . Can λ be chosen independently of K; that is, is there a $0 < \lambda_n < 1$ depending on n only with the property that every convex body K in \mathbb{R}^n is covered by H_n translates of $\lambda_n K$? We prove the affirmative answer.

References

[1] Brass, P.; Moser, W.; Pach, J. Research Problems in Discrete Geometry. Springer, New York, 2005. xii+499 pp. (Received September 16, 2008)