Marton Naszodi* (mnaszodi@math. ualberta.ca), 632 Central Academic Building, Department of Mathematics \& Statistics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. On Covering a Convex Set with Its Smaller Copies.
We consider two topics closely related to the Gohberg - Markus - Boltyanski - Hadwiger Problem, which is to prove that every convex body in \mathbb{R}^{n} is illuminated by 2^{n} directions. First, we present a new equivalent formulation of the problem, and introduce a fractional version of the illumination number. We show that for symmetric convex bodies, this number is at most 2^{n}. As a corollary, we obtain that for any symmetric convex polytope with k vertices, there is a direction that illuminates at least $\frac{k}{2^{n}}$ vertices.

Next, we answer the following question that was posed as Problem 6 in Section 3.2 of [?]: Let H_{n} denote the smallest integer k such that for every convex body K in \mathbb{R}^{n} there is a $0<\lambda<1$ such that K is covered by k translates of λK. Can λ be chosen independently of K; that is, is there a $0<\lambda_{n}<1$ depending on n only with the property that every convex body K in \mathbb{R}^{n} is covered by H_{n} translates of $\lambda_{n} K$? We prove the affirmative answer.

References

[1] Brass, P.; Moser, W.; Pach, J. Research Problems in Discrete Geometry. Springer, New York, 2005. xii+499 pp.
(Received September 16, 2008)

