1046-52-838 James M. Henle* (jhenle@smith.edu), Clark Science Center, Smith College, Northampton, MA 01063, and Frederick V. Henle (fredhenle@gmail.com), athenahealth, Inc., 311 Arsenal St., Watertown, MA 02472. Squaring and Not Squaring One or More Planes.
$X \subseteq \mathbb{N}$ tiles the plane if there is a tiling of the plane consisting of exactly one square each of side-length n for every $n \in X$. In [1] we prove that \mathbb{N} tiles the plane. It is easy to show that if X contains every sum of two distinct members of X, then X tiles the plane. We show here that if X contains no such sums then X doesn't tile the plane. We show in addition that the prime numbers do not tile the plane and that there is a set such that it and its complement each tile the plane.
[1] Henle, F. V. and Henle, J. M., "Squaring the Plane," The Am. Math. Monthly, 115(1): 3-12, 2008. (Received September 12, 2008)

