1046-57-1010Alexander Fel'shtyn* (felshtyn@diamond.boisestate.edu), 1910 University Drive, Boise, ID
83725-1555. How to categorify dynamical zeta functions. Preliminary report.

A programm of a categorification a la Khovanov of Weil type dynamical zeta functions is proposed.

Theorem Let $\phi : \Sigma \to \Sigma$ be a symplectomorphism of a compact surface. Then the Weil zeta function is a graded Euler characteristic

$$L_{\phi}(z) := \exp\left(\sum_{n=1}^{\infty} \frac{L(\phi^{n})}{n} z^{n}\right) = \sum_{d=0}^{\infty} L(S^{d}(\phi)) z^{d} = \sum_{d=0}^{\infty} \chi(\phi, d) z^{d} = \chi(\phi, z),$$

where $L(\phi^n), L(S^d(\phi))$ are Lefschetz numbers, $S^d(\phi) : S^d(\Sigma) \to S^d(\Sigma)$ is induced map on d-fold symmetric power of Σ and

$$\chi(\phi, d) = \chi(PFH(\phi, d)) = \chi(ECH(T_{\phi}, s_d)) = \chi(SWF(T_{\phi}, s_d)) = \chi(HF^+(T_{\phi}, s_d))$$

is the Euler characteristic of the periodic Floer homology of degree d or of the embedded contact homology of the mapping torus T_{ϕ} for $Spin^c$ -structure s_d , or the Euler characteristic of the corresponding Seiberg-Witten-Floer or Ozsvath-Szabo homology of (T_{ϕ}, s_d))

There is a strong indication that $SWF(T_{\phi}, s_d)$ cohomology provide a categorification of the Nielsen periodic point theory and corresponding minimal zeta function.

There are intriguing questions about categorification of arithmetic zeta functions. (Received September 15, 2008)