1046-57-1191 William M. Goldman* (wmg@math.umd.edu), Department of Mathematics, University of Maryland, College Park, MD 20742, and Eugene Z. Xia (ezxia@ncku.edu.tw), Division of Mathematics, National Center for Theoretical Science, National Cheng-Kung University, Tainan 701, Taiwan. Ergodicity of subgroups of mapping class groups on SU(2)-character varieties.

Let Σ be a compact oriented surface with fundamental group π . Its mapping class group $\Gamma := \mathsf{Mod}(\Sigma)$ acts on the character varieties $X := \mathsf{Hom}(\pi, \mathsf{SU}(2))/\mathsf{SU}(2)$ and $X_{\mathbb{C}} := \mathsf{Hom}(\pi, \mathsf{SL}(2, \mathbb{C}))//\mathsf{SL}(2, \mathbb{C})$ preserving a symplectic (respectively complex-symplectic) structure. We show that Γ acts ergodically on X by relating Dehn twists τ_c about simple closed curves $c \subset \Sigma$ in Γ to generalized twist flows, which are Hamiltonian flows of trace functions f_c .

More generally, let S be a set of simple closed curves on Σ . Then the subgroup Γ_S generated by τ_c , for $c \in S$ acts ergodically on X whenever the functions f_c , for $c \in S$, generate the coordinate ring of $X_{\mathbb{C}}$. We apply these ideas when S consists of separating simple closed curves and Γ_S is the corresponding subgroup of the Johnson-Torelli group. (Received September 15, 2008)