1046-57-1765 Rachel Roberts*, Department of Mathematics, Washington University, St Louis, MO 63130, and John Shareshian. Non-right-orderable 3-manifold groups.

We investigate the orderability of fundamental groups of 3-manifolds. We restrict attention to groups of the form

$$G = \langle t, a, b | a^t = a^{\phi_*}, b^t = b^{\phi_*}, t^p[a, b]^q = 1 \rangle_q$$

where ϕ_* is any automorphism of the rank two free group F = F(a, b) such that

- $[a, b]^{\phi_*} = [a, b]$, and
- the automorphism ϕ_{\sharp} of the abelianization $F/[F, F] \cong \mathbb{Z} \oplus \mathbb{Z}$ induced by ϕ_* lies in $SL_2(\mathbb{Z})$, with $|\operatorname{Trace}(\phi_{\sharp})| > 2$.

In other words, ϕ_* is induced by an orientation preserving pseudo-Anosov homeomorphism ϕ of a once punctured torus. We show that if either $\operatorname{Trace}(\phi_{\sharp}) < -2$ and $\frac{p}{q} \in [1, \infty]$ or $\operatorname{Trace}(\phi_{\sharp}) > 2$ and (p, q) = (1, 0) then $G(\phi, p, q)$ is not right orderable.

There is some overlap between this work and the work of Dąbkowski, Przytycki and Togha. (Received September 16, 2008)