1046-93-285 N. U Ahmed* (ahmed@site.uottawa.ca), SITE, 161 Louis Pasteur, University of Ottawa, Ottawa, Ontario K1N6N5, Canada. Kalman Filtering of Measure Driven Processes in Hilbert Space.

Let $\{X, Y, U, V\}$ be separable Hilbert spaces on which are defined the following system of stochastic evolution equations,

$$dx = Axdt + B(t)x(t-)\nu(dt) + \sigma(t)dW(t), x(0) = x_0, t \ge 0,$$
(1)

$$dy = H(t)x(t-)\beta(dt) + \sigma_0(t)M(dt), y(0) = 0, t \ge 0,$$
(2)

where A generates a C_0 semigroup on X and $\{B, \sigma, H, \sigma_0\}$ are operator valued functions and $\{\nu, \beta\}$ are countably additive signed measures. The processes $\{W, M\}$ are U and V valued Brownian motion and Martingale measures on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_{t\geq 0}, \mathcal{F}_t^y, P)$ with covariance operators Q and $R\tilde{\beta}(dt), \tilde{\beta}$ a positive measure. Problem is: Find the best estimate of x(t) given the history \mathcal{F}_t^y which is given by $\hat{x}(t) = E\{x(t)|\mathcal{F}_t^y\}$. This is equivalent to the control problem: Find $\Gamma \in B_{\infty}(I, \mathcal{L}(Y, X))$ that minimizes the error covariance functional $J(\Gamma) = \int Tr(\lambda(t)K(t))dt$ with K satisfying the evolution equation

$$dK = (AK + KA^*)dt + (BK + KB^*)\nu(dt) + Q(t)dt$$

- $(\Gamma HK + KH^*\Gamma^*)\beta(dt) + (\Gamma \hat{R}\Gamma^*)\tilde{\beta}(dt), t \ge 0,$ (3)

on the Banach algebra $\mathcal{L}(X)$. (Received August 25, 2008)