1046-I1-1637 Richard D. Neidinger* (rineidinger@davidson.edu), Davidson College, Box 7002, Davidson, NC 28035-7002. Algorithms for Multivariable Polynomial Interpolation.
Does there exist a unique polynomial of degree d in n variables that agrees with values at (correct number) nodes? First, consider nodes as coordinates on a finite grid, using (hopefully few) tick marks on each axis. A general existence and uniqueness theorem always holds where the space of polynomials is the Span of classic Newton polynomials, e.g. a node at grid point $\left(x_{2}, y_{1}\right)$ would correspond to $\left(x-x_{0}\right)\left(x-x_{1}\right)\left(y-y_{0}\right)$. With special node structure, the Span will be polynomials of degree d and an efficient divided-difference algorithm will produce the coefficients. More generally, the question asks if a multivariable Vandermonde matrix M is invertible. Recent algorithms can be explained by Gaussian elimination on M^{T} using blocks of the same monomial order. Row reduce to block identity matrices along the diagonal. If successful, these row operations on I produce normalized Newton polynomials that are one at a specific node but zero on all nodes of lower or same order. Then, a simple back-substitution algorithm can find coefficients. If unsuccessful, a row of zeros corresponds to a polynomial that is zero at all nodes, making existence and uniqueness impossible. Operations can stop sooner by using block matrix operations in Gaussian elimination. (Received September 16, 2008)

