Let p be an odd prime and $\gamma\left(k, p^{n}\right)$ be the smallest positive integer s such that every integer is a sum of $s k$-th powers $\left(\bmod p^{n}\right)$. Earlier we established $\gamma\left(k, p^{n}\right) \leq[k / 2]+2$ and $\gamma\left(k, p^{n}\right) \ll \sqrt{k}$ provided that k is not divisible by $(p-1) / 2$. Also if $t=(p-1) /(p-1, k)$, and q is any positive integer, we showed that if $\phi(t) \geq q$ then $\gamma\left(k, p^{n}\right) \leq c(q) k^{1 / q}$ for some constant $c(q)$. These results generalized results known for the case of prime moduli. Here we generalize these results to a number field setting. Let F be a number field, R it's ring of integers and P a prime ideal in R that lies over a rational prime p with degree of inertia f. Let $\gamma\left(k, P^{n}\right)$ be the smallest integer s such that every algebraic integer in F that can be expressed as a sum of k-th powers $\left(\bmod P^{n}\right)$ is expressible as a sum of $s k$-th powers $\left(\bmod P^{n}\right)$. We prove for instance that when $t=\left(p^{f}-1\right) /(p-1, k)$ then $\gamma\left(k, P^{n}\right) \leq c(t) p^{n f / \phi(t)}$. (Received September 16, 2008)

