1046-Z1-167 William M. Wagner* (wwagner1@columbus.rr.com), c/o Kathryn L. Wagner, 7199 Dublin Rd., Dublin, OH 43017-1164. Continual Compounding of a Conventional Mortgage.
Definitions:
L: Mortgage Loan; e.g. \$100,000.
T : Term in periodic units of time; e.g. 15 years.
$\mathrm{R} \%$: Rate of periodic interest; e.g. 6% per annum.
A: Amount of payment due at the end of one unit of time.
P: Instantaneous Principal.
The recursion relation for discrete compounding is $P(i+1)=P(i)[1+R \% / m]$ where m is the number of payments (intervals) per unit of time; compounding occurs at the end of each such interval. As the cycle, $(1 / m)$,of compounding and payments approaches infinity, the resulting limit is the first order linear Ordinary Differential Equation: $-d P / d t=$ $-R \% P+A$ The Integration Factor for this O.D.E. is $\operatorname{EXP}(-R \% t)$. It shall be shown that:
I. The amplication factor of the Loan for total payments is $(A T / L)=R \% T /[1-E X P(-R \% T)]$; (Here, the total payment is $\$ 151,660.60-$.)
II. Integral $[0, T ;(-R \% P+A)]=L$; (This is analogous to the fact that, under discrete existense, the sum of the reductions in principal is equal to the Loan.)
III. The total interest $(A T-L)=R \%$ Integral $[0, T ; P]$. (Received August 10, 2008)

