1046-Z1-1843 Shane P Redmond* (Shane.Redmond@eku.edu), 313 Wallace Bldg, 521 Lancaster Ave., Eastern Kentucky University, Richmond, KY 40475. Zero Product Sequences in Commutative Rings. Preliminary report.
Let R be a commutative ring. A zero product sequence (or $z p s$) is a sequence $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq R$ such that $a_{1} \cdot a_{2} \cdots a_{n}=0$ with each $a_{i} \neq 0$. A minimal zps is a zps such that no subsequence is also a zps. Define the zps constant for R, denoted $D_{z}(R)$, to be the supremum of the lenghths of every minimal zps of R. Several examples and consequences of this definition are given, as well as applications to the study of zero-divisor graphs. (Received September 16, 2008)

