Meeting: 1005, Newark, Delaware, SS 16A, Special Session on Probabilistic Paradigms in Combinatorics

1005-05-111 Paul Balister, Béla Bollobás and Amites Sarkar* (asarkar@memphis.edu), Department of Mathematics, University of Memphis, Memphis, TN 38152, and Mark Walters. Connectivity of random geometric graphs.
Let \mathcal{P} be a Poisson process of intensity one in the square S_{n} of area n. We join each point of \mathcal{P} to its k nearest neighbours, obtaining the random geometric graph $G\left(S_{n}, k\right)$. How large should k be to make $G\left(S_{n}, k\right)$ connected? I'll discuss upper and lower bounds for this problem. Specifically, let $p(n, k)$ be the probability that $G\left(S_{n}, k\right)$ is connected. I'll show that for $k<0.3 \log n, p(n, k) \rightarrow 0$ as $n \rightarrow \infty$, and sketch a proof that if $k>0.52 \log n, p(n, k) \rightarrow 1$ as $n \rightarrow \infty$. (Received February 02, 2005)

