Meeting: 1005, Newark, Delaware, SS 16A, Special Session on Probabilistic Paradigms in Combinatorics

1005-05-134 Robert Ellis, Department of Mathematics, 102 Milner Hall, Texas A\&M University, College Station, TX 77843-3368, Jeremy Martin, School of Mathematics, University of Minnesota, Minneapolis, MN 55455, and Catherine Yan* (cyan@math.tamu.edu), Department of Mathematics, 102 Milner Hall, Texas A\&M University, College Station, TX 77843-3368. On the Diameter of Random Geometric Graphs. Preliminary report.
The unit ball random geometric graph $G=G_{p}^{d}(\lambda, n)$ has as its vertices n points distributed independently and uniformly in the unit ball in \mathbb{R}^{d}, with two vertices adjacent if and only if their ℓ_{p}-distance is at most λ. In this talk we determine upper and lower bounds for the graph diameter of G, when λ is over the connectivity threshold. We show that almost always, $\operatorname{diam}_{p}(\mathbf{B})(1-o(1)) / \lambda \leq \operatorname{diam}(G) \leq \operatorname{diam}_{p}(\mathbf{B})\left(1+O\left((\ln \ln n / \ln n)^{1 / d}\right)\right) / \lambda$, where $\operatorname{diam}_{p}(\mathbf{B})$ is the ℓ_{p}-diameter of the unit ball B. (Received February 04, 2005)

