Meeting: 1005, Newark, Delaware, SS 16A, Special Session on Probabilistic Paradigms in Combinatorics

1005-05-191 Yoshiharu Kohayakawa, Miklos Simonovits and Jozef Skokan* (skokan@ime.usp.br),
Instituto de Matematica e Estatistica, USP, Rua do Matao, 1010, 05508-090 Sao Paulo, SP, Brazil.
The 3-colored Ramsey Number of Odd Cycles.
For graphs L_{1}, \ldots, L_{k}, the Ramsey number $R\left(L_{1}, \ldots, L_{k}\right)$ is the minimum integer N satisfying that for any coloring of the edges of the complete graph K_{N} on N vertices by k colors there exists a color i for which the corresponding color class contains L_{i} as a subgraph.

In 1973, Bondy and Erdős conjectured that if n is odd and C_{n} denotes the cycle on n vertices, then $R\left(C_{n}, C_{n}, C_{n}\right)=$ $4 n-3$. In 1999, Luczak proved that $R\left(C_{n}, C_{n}, C_{n}\right)=4 n+o(n)$, where $o(n) / n \rightarrow 0$ as $n \rightarrow \infty$. In this paper we strengthen Łuczak's result and verify this conjecture for n sufficiently large. (Received February 08, 2005)

