Meeting: 1005, Newark, Delaware, SS 16A, Special Session on Probabilistic Paradigms in Combinatorics

1005-05-203 Vera T. Sos* (sos@renyi.hu), Renyi Institute, Budapest, Hungary, and Miklos Simonovits (miki@renyi.hu), Renyi Institute, Budapest, Hungary. A hierarchy of randomness for graphs.
We formulate four families of problem with which we aim at distinguishing different levels of randomness.
The first one is completely non-random, being the ordinary Ramsey-Turán problem and in the subsequent three problems we formulate some randomized variations of it. These four levels form a hierarchy, the main topic of this work.

We formulate very briefly (and informally) the four questions for a special case. The questions are as follows:
Fix a family of graphs \mathcal{L} and an integer $r \geq 2$.
(DD) How many edges guarantee for a graph G_{n} that if we r-color its edges arbitrarily, we always find a monochromatic $L \in \mathcal{L}$?
(DR) How many edges guarantee for a graph G_{n} that in almost all r-edge-colorings, we find a monochromatic $L \in \mathcal{L}$?
(RD) How many edges guarantee for a random graph R_{n} ?
(RR) How many edges guarantee for a random graph R_{n} almost surely, that r-coloring its edges at random, almost all the r-colorings contain a monochromatic $L \in \mathcal{L}$?
(Received February 09, 2005)

