Meeting: 1005, Newark, Delaware, SS 2A, Special Session on Singular Analysis and Spectral Theory of Partial Differential Equations

1005-35-152Ingo Witt* (i.witt@imperial.ac.uk), Department of Mathematics, Imperial College London,
180 Queen's Gate, SW7 2AZ London, England. Solvability for a class of semilinear elliptic
Fuchsian PDEs. Preliminary report.

We discuss solvability for semilinear elliptic equations of the form

$$Au = F(x, B_1u, \dots, B_Ku)$$
 in $X \setminus \partial X$, $Tu = g$ on ∂X ,

for a differential operator A that is Fuchsian with respect to ∂X , for a C^{∞} compact manifold X, and that together with the boundary condition Tu = 0 is supposed to be positive definite selfadjoint in the weighted L^2 space $H^{0,\delta}(X)$, for some $\delta \in \mathbb{R}$. The Fuchsian differential operators B_1, \ldots, B_K are of orders strictly less the order of A, and the nonlinearity $F = F(x, \nu)$ is of at most polynomial growth in ν . Moreover, the linear surjective boundary map $T: D_+ \to \mathbb{R}^{\mu}$ factors through D_+/D_- , where D_+ and D_- are the maximal and minimal domains of A in $H^{0,\delta}(X)$, respectively; dim $D_+/D_- = 2\mu$.

As solutions to the above problem are unbounded in general, the main step consists in an *a priori* description of the asymptotics of these solutions u = u(x) as $x \to \partial X$. (Received February 07, 2005)