Meeting: 1005, Newark, Delaware, SS 5A, Special Session on Designs, Codes, and Geometries

1005-51-125 **David A. Drake*** (dad@math.ufl.edu), University of Florida, Department of Mathematics, P. O. Box 118105, Gainesville, FL 32611. *Desarguesian nets without ovals*. Preliminary report. Let $\Pi = \Pi(D)$ be the Desarguesian affine plane coordinatized by a division ring D. An r-net Σ held by Π is the union of r parallel classes of lines of Π . A set S of r points of Σ is called an *oval* of Σ if each two but no three points of S are collinear in Σ . Necessary and sufficient conditions for Π to hold an r-net with oval are known for $r \leq 7$. Assume that r = 6 or 7 and, in the case r = 7, that char $D \neq 2$; under these assumptions, we prove that Π holds an r-net without an

oval if and only if $|D| \ge 9$. (Received February 03, 2005)