Meeting: 1005, Newark, Delaware, SS 1A, Special Session on Homotopy Theory (in Honor of Donald M. Davis's and Martin Bendersky's 60th Birthdays)

1005-55-167
F. R. Cohen* (cohf@math.rochester.edu), Department of Mathematics, University of Rochester, Rochester, NY 14627, and J. Wu (matwuj@nus.edu.sg), Department of Mathematics, National University of Singapore, Singapore, Singapore. Experiments with simplicial groups. Preliminary report.

The purpose of this talk is to consider connections between the simplicial group $F[S^1]$, Milnor's free group for the simplicial circle, and AP_* a simplicial group which in degree n is P_{n+1} , the (n+1)-st pure braid group. An embedding $F[S^1] \to AP_*$ was given in math.AT/0409307. There are classical maps of P_{2g+1} to Γ_g , the mapping class group for genus g surfaces. It is the purpose of this talk to consider the composites of these two maps, and natural functions defined on these simplicial groups. Let $Sym^n(M)$ denote the n-th symmetric power of the abelian group M.

Proposition 1: The composite $F_2 \to P_3 \to SL(2,\mathbb{Z}) \to PSL(2,\mathbb{Z})$ is an isomorphism onto the principal congruence subgroup of level 2.

One remark is that representatives of $H^*(F_2; Sym^2(\oplus_2 \mathbb{R}))$ distinguish multiples of the classical Hopf map $S^3 \to S^2$.

Proposition 2: If $g \ge 1$, and $n \ge 2$, there is torsion of arbitrarily large order in $H^*(F_{2g}; Sym^n(\bigoplus_{2g}\mathbb{Z}))$. (Received February 08, 2005)