Meeting: 1001, Evanston, Illinois, SS 8A, Special Session on Computability Theory and Applications

1001-03-82Wesley Calvert*, Department of Mathematics, 255 Hurley Hall, University of Notre Dame,
Notre Dame, IN 46556, and Valentina Harizanov, Julia F. Knight and Sara Miller.
Description and Comparison of Computable Structures. Preliminary report.

I will address two related questions which arise in computable model theory. First, given a computable structure, what is its simplest description, up to isomorphism? Second, given some class of computable structures, how difficult is it to distinguish nonisomorphic members?

In particular, let K be a class of computable structures, and let I(K) denote the set of indices for members of K. We write $I(\mathcal{A})$ for the set of indices for a structure \mathcal{A} . Write E(K) for the set of ordered pairs from I(K) which index isomorphic members of K. Now, if \mathcal{A} is computable, $I(\mathcal{A})$ is Σ_1^1 , and if I(K) is hyperarithmetical, then E(K) is Σ_1^1 .

Often when E(K) is complete at some level (for instance, Π_3^0), this completeness is witnessed by $I(\mathcal{A})$ for some $\mathcal{A} \in K$. It is interesting to explore when there is such a witness. It is also interesting that for some K, any member will work as such a witness. Several examples will be given to illustrate these phenomena. (Received August 10, 2004)